
1 Appendix: Measuring jump height

The purpose of this appendix is to explain how jump height is derived from
recorded vertical acceleration.

In order to calculate jump height from vertical acceleration as a function of
time we need to revisit the equations of motion, which we will derive in the next
section for sake of completeness.

2 Motion with known acceleration

If we know the acceleration as a function of time, initial position, and initial
velocity we can calculate velocity and position as a function of time as well.
This is because we can integrate acceleration with respect to time to get the
change in velocity. This is necessary as acceleration is by definition the rate
of change of velocity, and therefore summing up the rates of change of velocity
with respect to time will be equivalent to the change in velocity. Hence, if we
know the initial velocity we will then know the velocity at any given point in
time by adding the integral of acceleration up to that point in time. Thereafter
we can repeat the same procedure to get from velocity to position.

We will start with velocity based on acceleration. That is,

v(t) = v0 +

∫ t

t0

a(t)dt

where initial velocity (v0) and acceleration as a function of time (a(t)) are
known. For simplicity we will consider the flight phase where acceleration is
constant, that is a(t) = g = −9.81m/s2. The integral of a constant is the
constant multiplied by time and an integration constant, that is v(t) = gt+C1.
It is relatively straightforward to presume that the integration constant must be
the initial velocity, that is C1 = v0, and combining the two we get v(t) = v0+gt.

We will next use similar reasoning to obtain position from velocity as a
function of time. That is, velocity is the rate of change of position and therefore
the integral of velocity with respect to time is the change in position. Again,
position is going to be the initial position + the integral of velocity up to that
point in time and therefore,

x(t) = x0 +

∫ t

t0

v(t)dt

The integral of velocity with respect to time is
∫ t

t0
(
∫ t

t0
a(t)dt + v0t)dt + C2,

and we can set C2 to x0 like we did for velocity. We will keep on considering
movement with constant acceleration and therefore (following integration rules)
we get :

x(t) = x0 + v0t +
1

2
gt2
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With this we have derived the equations of motion with constant acceler-
ation. Deriving the formulae of motion with constant acceleration is actually
not fully defined due to the integration constants and we had to use reason to
give values to the integration constant. The fully determined way of deriving
these equations is by starting from position as a function of time and taking the
derivative with respect to time. That is,

v(t) = x′(t)

a(t) = v′(t) = x′′(t)

We used the opposite in the above formula because we aim to determine
jump height (position) based on measured acceleration. We can generalize the
above approaches to our sampled data by realizing that calculating the definite
integral of a discrete function (= a time series of sampled accelerations) is simply
the cumulative sum of the values multiplied by the sampling interval. Starting
from v0 = 0 and x0 = 0 (i.e. standing still, and setting the current height as
the initial position) we will get

v(t) =

t∑
t=t0

atdt

x(t) =

t∑
t=t0

vtdt

With these last two equations we are now able to derive velocity and position
as a function of time from our sampled accelerations. This is easy to implement
with any analysis programme, particularly so with Octave (or matlab) as they
come with a function cumtrapz, which is meant for this particular application.
Instead of giving the cumulative sum, the function uses trapezoidal integra-
tion, which is considered a more appropriate way to evaluate discrete integral
compared to direct cumulative sum. That is, you would use

velocity = cumtrapz(acceleration)*dt;
position = cumtrapz(velocity)*dt;

in Octave or matlab to obtain velocity and position from your sampled ac-
celeration. N.B. in practice, this would most likely lead into very poor results
due to integration drift but that is besides the scope of this text.

3 Obtaining jump height from flight time

Now that we have defined the equations of motion we can return to the question
of how do we get jump height from recorded accelerations. Firstly, we need to
realise that during flight we are considering motion with constant acceleration
x(t) = x0 + v0t + 1

2at
2. We will quickly realise that it takes half of the flight

time to get to the apex of the jump and therefore we are interested in x(t1/2),
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where t1 = flighttime. This means that we have two unknowns (x(t1/2) and
v0), and only one equation. We can obtain a second equation by realising that
x(t) = 0 for both t = 0 (take-off), and t = t1 (touchdown), which gives us three
equations and two unknows. This means we have an overdetermined group of
equations, which is good news as an overdetermined group of equations can be
solved.

x(t0) = x0 + v0t0 +
1

2
at0

2;x(t0) = 0, t0 = 0, x0 = 0, a = g, v0 =?

x(t1/2) = x0 + v0t1/2 +
1

2
at1/2

2
; t1 = flighttime, x(t1/2) =?, a = g, v0 =?

x(t1) = x0 + v0t1 +
1

2
at1

2; t1 = flighttime, x(t1) = 0, a = g, v0 =?

We can just disregard the first equation (because any v0 would do) and
use the remaining two equations (to have a group of equations with a unique
solution). We will then first solve the third equation for v0.

x(t1) = x0 + v0t1 +
1

2
at1

2;x(t1) = 0, x0 = 0, a = g, v0 =?

therefore, v0 = 1
2at1

2/(−t1) = −gt1/2. We will then insert the v0 = −gt1/2
into the second equation.

x(t1/2) = x0+(−gt1/2)×t1/2+
1

2
at1/2

2
; t1 = flighttime, x0 = 0x(t1/2) =?, a = g

We will substitute the known values in to get

x(t1/2) = (−gt1/2) × t1/2 +
1

2
gt1/2

2

and then simplify

x(t1/2) = −gt1/2
2

+
1

2
gt1/2

2
= −1

2
gt1/2

2
= −gt2

8

Note that we have implicitly defined g = -9.81 but using g = +9.81 we can
take out the - sign from above and this is how we end up with jump height =
gt2

8 you will find reported in textbooks, literature, and the associated paper.

4 Obtaining jump height from take-off velocity

We have defined the equations of motion, and instead of taking the ight time
based on the acceleration recording, we could start from standing still, and inte-
grate vertical acceleration until the take-off instant to estimate take-off velocity
using the two discrete sums we defined earlier. Since we have movement with
constant acceleration during flight (neglecting air drag as negligible due to the
relatively low velocity), we can derive the equation for jump height based on
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take-off velocity. That is, we will again obtain a group of equations based on
the known facts. We know the take-off velocity, and we know that at the apex
velocity is zero. Therefore, we can use the equation of velocity with con- stant
acceleration for the first equation, and position with constant acceleration as
our second equation evaluating both at the instant of the apex of the jump.
That is;

v(ta) = v0 + at; v(ta) = 0, a = g, v0 = v0, ta =?

x(ta) = x0 + v0ta +
1

2
ata

2;x0 = 0, ta = time at apex, x(ta) =?, a = g, v0 = v0

We will solve the first equation for ta by reorganising ta = −v0/g and sub-
stitute the solution of ta into the second equation;

x(ta) = v0
−v0
g

+
1

2
g(

−v0
g

)2 =
−v20
g

+
1

2
g
v20
g2

=
−v20
g

+
v20
2g

=
−v20
2g

Again, we note that we have implicitly defined g = −9.81m/s2, which cancels

out the minus sign and we are left with jumpheight =
v2
0

2g with g = 9.81, which
you will find from the literature and the associated paper.

5 Obtaining jump height from concentric net
impulse

Obtaining jump height based on concentric net impulse is akin to obtaining
jump height based on take-off velocity. In order to get there, we need to know
that the change in momentum is equivalent to the applied impulse. Momentum
is M = mv;M = momentum,m = mass, v = velocity, and impulse is I =
ft; I = impulse, f = force, t = duration of force application.

In order to get impulse from vertical acceleration we need to remember
Newton’s second law, which states F = ma. Now we will substitute F into I;
I = mat, and integrate with respect to time from start of the concentric phase
until take-off. We will then set ∆M = I , i.e. mvto −mv0 = mat; vto = take-
off velocity, v0 = 0. We will note that each term has m so we can just divide
the m away to get vto = at, and for variable acceleration we can replace at

with
tto∑
t=t0

atdt. We can then just insert the take-off velocity into the equation we

derived for obtaining jump height from flight time. If we actually have measured
impulse (e.g. with a force plate) we will simply divide the impulse with body

mass to obtain take-off velocity, or in other words jump height = I2

2gm2 .
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